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A genetic algorithm has been developed to determine the opti-
mal design of a two-component catalyst for the diffusion-limited
A + B → AB↑ reaction in which each species is adsorbed specifi-
cally on one of two types of sites. Optimisation of the distribution of
catalytic sites on the surface is achieved by means of an evolutionary
algorithm which repeatedly selects the more active surfaces from a
population of possible solutions leading to a gradual improvement
in the activity of the catalyst surface. A Monte Carlo simulation is
used to determine the activity of each of the catalyst surfaces. It
is found that for a reacting mixture composed of equal amounts
of each component the optimal active site distribution is that of a
checkerboard, this solution being approximately 25% more active
than a random site distribution. Study of a range of reactant com-
positions has shown the optimal distribution of catalytically active
sites to be dependent on the composition of the ratio of A to B in
the reacting mixture. The potential for application of the optimisa-
tion method introduced here to other catalysts systems is discussed.
c© 1997 Academic Press

INTRODUCTION

There has been much recent interest in the concept of
catalyst design at the molecular scale, utilising develop-
ments in surface science technology to manipulate the com-
position of the surface layer of catalytic materials in order
to optimise activity or selectivity with respect to a partic-
ular reaction (1). Examples include the epitaxial deposi-
tion of ordered metallic monolayers on metallic or metallic
oxide supports (2) and the application of microelectronic
circuitry fabrication technologies to deposit metal particles
of around 100 Å in regular arrays on silica and alumina
supports (3, 4). Given, therefore, that the technology exists
in principle to construct surfaces at the molecular level we
must begin to develop methodologies for designing such
surfaces for particular reactions.

In this paper, the optimisation of a surface containing two
catalytically active sites is considered. Possible application
of the method described might therefore lie in the opti-
misation of bimetallic or metal–metallic oxide composites,

1 To whom correspondence should be addressed.

where the use of such two-component catalysts in prefer-
ence to single-component materials has led to significant
improvements in catalytic activity and product selectivity
(5). In particular the use of supported Pt–Rh and noble
metal/reducible oxide catalysts for CO oxidation at low
temperatures has been the subject of considerable interest
(6) due to the importance of this reaction in the automotive
industry as a pollution control measure. Bimetallic catalysts
have also been utilised in more complex reactions such as
the cracking of hexane over a metallic catalyst composed
of an alloyed overlayer of Au on Pt(111) and Pt(110) (2),
a reaction established in the petrochemical processing in-
dustries. In this latter reaction the selectivity with respect
to the various cracking products was found to be highly de-
pendent upon the surface coverage of Au. This variation
was partly attributed to the formation of active sites of dif-
fering coordination number to the pure platinum crystals,
illustrating the potential for catalyst design at the molecular
level.

Genetic algorithms (GAs) are general purpose optimi-
sation methods which are finding increasing application in
a wide range of disciplines, particularly in engineering and
the physical sciences. Although they are based on the mech-
anisms of Darwinian evolution, and extensive use of bio-
logical terminology is made in their description, their use is
by no means restricted to biological problems. GAs are par-
ticularly useful in situations where no analytic optimisation
techniques are available. Recent examples of their appli-
cation to optimisation problems include the determination
of the minimum energy configuration of metallic clusters
(7), pipeline design (8), and the design of nuclear magnetic
resonance imaging coils (9). In this paper we consider the
use of a GA to determine the optimal design of a two-
component catalyst for the simple monomer–monomer re-
action between two identical but distinguishable species A
and B. In this hypothetical reaction each component is con-
sidered to adsorb preferentially on to one of two types of
surface sites. Once adsorbed the reactants may undergo a
Langmuir–Hinshelwood type reaction to form the reaction
product, AB, which immediately desorbs. To maximise the
activity of the catalytic surface, we must optimally deter-
mine both the number and the geometric configuration of
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the two types of sites. Since we have available no analytic
optimisation technique appropriate for searching among all
possible site configurations, we must employ a nonanalytic
method, such as the GA.

The method adopted is outlined below to give an
overview of the general principles underlying evolutionary
optimisation. The method of combining the optimisation
routine with the Monte Carlo simulation is then considered
in detail followed by a discussion of the results obtained.
In the final section we draw conclusions and consider the
possibility for extension of the GA-based approach to more
realistic catalytic systems.

METHOD

General Approach

GAs (10, 11) utilise a biological metaphor in an attempt
to solve an optimisation problem by the propagation of
some desirable characteristic of the solutions through the
selective breeding of a set of possible solutions. Such an
approach has proven to be a robust method of locating so-
lutions to complex problems with many local maxima. In
addressing the optimisation of a catalyst surface comprising
two types of site a set of such surfaces is first generated at
random to represent an initial set of estimates to the solu-
tion, each of these possible solutions representing a partic-
ular arrangement of the two site types on a planar surface.
The activity of the catalyst surfaces is then determined by a
Monte Carlo simulation of the reaction conducted on each
of the surfaces. Each of the catalyst surfaces and its asso-
ciated activity are then passed to the GA to determine the
next set of solutions, and the process is repeated until a
single best solution emerges. This procedure is illustrated
schematically in Fig. 1. While the GA provides no guaran-
tee of optimality, its ability to provide good solutions to a
wide variety of optimisation problems has well-established
theoretical foundations (11).

A genetic algorithm, in its simplest form, works by breed-
ing successive sets of binary strings, which are encoded ver-
sions of possible solutions to an optimisation problem. The
actual solution corresponding to a particular set member is
known as its phenotype, while the binary string to which it
corresponds is known as its genotype or chromosome. In
the present case the phenotype is the representation of the
two-dimensional catalyst surface, as shown in Fig. 2. The
set of solutions being processed by the GA at any one time
is known as the population. The population size remains
constant throughout the optimisation process.

A number of operations analogous to biological repro-
duction may then act on this population to produce subse-
quent generations of solutions, the driving force for evolu-
tionary improvement being the more frequent selection of
the more successful individuals in the population for breed-
ing into subsequent generations. The production of succes-

FIG. 1. Flow diagram illustrating the optimisation procedure. A
Monte Carlo simulation provides the GA with a measure of the catalytic
activity of the surface, r, known as the fitness function. This activity is
then scaled to determine F(r), the scaled fitness function, which is propor-
tional to the probability of selecting the surface for breeding into the next
generation.

sive populations is achieved by using two fundamental ge-
netic operators, crossover and mutation, shown in Fig. 3.
The crossover operation can be considered the means by
which desirable characteristics of the successful solutions
are spread in the population by exchange of genetic infor-
mation. Each of the individuals in the population is selected
for breeding with a frequency related to its fitness, which
in this case is related to the activity of the corresponding
catalyst surface as determined by a Monte Carlo simulation.
Two individuals are selected and a crossover attempted with
a specified probability of success. If the mating is successful
a section of each of the two parent chromosomes is se-
lected and swapped between the parents to produce a pair

FIG. 2. A 2-D binary chromosome and a section of the corresponding
phenotype representing a catalyst surface.
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FIG. 3. The basic genetic operators in a genetic algorithm acting on
a one-dimensional chromosome. In the crossover operation (a) all genes
between either a single point and the end of the chromosome (one-point
crossover) or between two points (two-point crossover) are swapped with
the corresponding genes in the other parent chromosome; thus the next
generation of chromosomes retains some of the characteristics of the pre-
vious generation. In mutation (b) an attempt is made to alter each individ-
ual gene with a specified probability of success. In a binary chromosome
a successful mutation leads to the mutated gene assuming the alternative
binary digit.

of chromosomes as children. The parents are then discarded
and the offspring are carried forward into the next genera-
tion maintaining a constant population size. If the mating is
unsuccessful the parents are carried over into the next gen-
eration in an unmodified form. To maintain diversity within
the population and to introduce a random search mecha-
nism an additional operation, mutation, is used. After the
crossover operations have led to the next population, each
gene of each individual may mutate with a particular prob-
ability (often around 0.1–3%) to assume the value of the
alternative binary digit. The analogous process in biologi-
cal evolution is the selection of genetic material (chromo-
somes) for recombination and reproduction, based upon
the performance or “fitness” of the organism (phenotype)
comprising this genetic material.

Optimisation of the Catalyst Surface

In summary there are two stages in the optimisation pro-
cedure; first there is the determination of the activity of a
member of the population and, second, the use of this ac-
tivity in guiding the evolution of the population towards an
optimal solution by use of the GA.

Determination of Catalytic Activity by Monte
Carlo Simulation

To test the fitness of a solution and hence optimise the
catalyst surface using the GA, each member of the pop-
ulation of solutions must be characterised using objective
criteria. In this case the appropriate criterion is the catalytic
activity of that member of the population. In this work a
Monte Carlo simulation (12, 13) has been used because it

overcomes the limitations of deterministic models by mak-
ing no prior assumptions regarding either surface homo-
geneity or the distribution of reactants on the surface. In
contrast, a classical approach to modelling surface reactions
uses simple algebraic equations to describe the rate of the
surface reaction assuming a random distribution of each of
the reacting species on a homogeneous surface. Such mod-
els assume a spatially averaged description of the adsorbed
species. This assumption will be inaccurate for a reaction
on a disordered surface as information regarding the geo-
metric distribution of active sites cannot be incorporated
into a single algebraic expression for the reaction rate. Fur-
thermore, for diffusion-limited reactions of the type con-
sidered in this example it has been demonstrated that, even
on a homogeneous surface, the particles are not randomly
distributed and segregation of the reactants is observed as
a consequence of fluctuations in the local particle density
(14). Clearly, selection of a Monte Carlo algorithm to quan-
tify the fitness of a population member in terms of its cata-
lytic activity is appropriate here.

In this work we use the Monte Carlo simulation to calcu-
late the catalytic activity of each surface with respect to the
diffusion-limited A + B → AB↑ reaction (15). The simula-
tion is performed on a regular lattice of 120 × 120 sites with
periodic boundaries. Each site, labelled as S1 or S2, may ad-
sorb specifically only one of the two species. The reaction
is assumed to follow Langmuir–Hinshelwood type kinetics
and can be considered to consist of three irreversible steps:
two adsorption steps and a reaction step to produce the
product which immediately desorbs. The rate constants for
each stage are taken to be infinite; the initial adsorption
step is therefore the rate-limiting process.

A + S1 → AS1

B + S2 → BS2 [1]
AS1 + BS2 → S1 + S2 + AB↑.

The above mechanism closely resembles that for the
oxidation of CO by two-component catalysts. In these
catalysts the rate of CO oxidation is enhanced relative to
a single component noble metal catalyst by the addition
of a second component, typically either another metal or
a metallic oxide (16). In the case of the pure noble metal
catalyst the CO oxidation rate is inhibited by the saturation
of the metal surface by CO at all but very low CO/O2 ratios.
The addition of a second component which specifically
adsorbs only oxygen would, therefore, greatly increase the
rate of CO oxidation. Examples of such systems include
Rh/Cu and Sn/Pd bimetallic catalysts (17, 18). In these
systems the Cu and Sn partially oxidise to form adsorption
sites for oxygen only, the rest of the surface being almost
fully covered with CO. These two types of adsorption site
can be considered equivalent to the S1 and S2 sites in the
simplified model considered in this paper. The design of
such a bimetallic material was considered qualitatively
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by Herz et al. (19) for the related A + (1/2)B2 → AB↑
reaction.

The Monte Carlo method employed here follows directly
from that described in previous work on both homogeneous
surfaces (15, 20) and heterogeneous surfaces (21). The re-
acting system is considered to consist of an infinite bulk
phase composed of the reacting species which adsorb, at
random, onto a catalytic surface represented as a regular
array of adsorption sites. The reaction is simulated by a
series of discrete events:

(i) A particle is selected from the gas phase for adsorp-
tion with a probability proportional to the abundance of its
species in the gas phase.

(ii) A site on the lattice is selected at random and the
particle adsorbs and occupies the site if the site is of the
correct type and is vacant (i.e., reaction by the Eley–Rideal
mechanism is not permitted).

(iii) Each of the neighbouring lattice locations is checked
in a random order. If a neighbouring AB pair is formed then
both desorb, vacating both adsorption sites.

Steps (i)–(iii) are repeated until a steady value is obtained
for the rate of production of the AB pairs. This value is taken
to represent the activity of the catalytic surface and is passed
to the GA to determine the probability of selection of the
surface for breeding into the next generation.

Application of a Genetic Algorithm to Catalyst Design

The optimisation procedure was implemented in C++
on a Silicon Graphics Indigo2 workstation using prewrit-
ten software to provide the basic genetic operators (22).
Each surface was encoded as a two-dimensional binary ar-
ray, where 0 and 1 represented sites S1 and S2, respectively.
A 6 × 6 array was typically used, although arrays up to 8 × 8
sites were used to confirm the results obtained. The cata-
lyst surface was constructed by tiling this base array over
a larger grid of 120 × 120 sites to minimise errors resulting
from the use of a finite lattice. For the simple reactions of
the type considered in this work we would not expect the
repeating unit to be larger in size than a few lattice spac-
ings as the size of the reacting molecule is equivalent to
only a single lattice location. The Monte Carlo simulation
was then conducted by making a large number of repeated
adsorption attempts and the activity estimated by counting
the number of AB product molecules produced. As the sim-
ulation is a stochastic process the catalyst activity returned
is a random variable, so the simulation on each surface was
repeated a number of times to obtain a reliable measure of
the surface activity. In the present case the simulation out-
put was taken to be reliable if it could, with 95% confidence,
correctly distinguish two surfaces differing in only one site
on the basis of their activities. Typically around 106 Monte
Carlo steps (MCS) and five repeated trials were required to
obtain data accurate enough to differentiate between such
a pair of similar surfaces.

Given that R is the total number of product molecules
produced in a given simulation run the activity of the cata-
lyst surface can be defined in terms of the turnover fre-
quency, r, the number of reactions occurring per unit time
on a lattice composed on N lattice sites. Time, t, was mea-
sured in terms of Monte Carlo steps, where 1 MCS is defined
as N attempted adsorption events. The measure of catalytic
activity can therefore be written as

r = R

t · N
. [2]

As the difference in activity between the optimal and aver-
age catalytic surfaces was typically only 20–30%, the prob-
ability of selecting the more successful surfaces in a given
generation for breeding would not be much greater than
that for a randomly selected surface. A scaled fitness func-
tion, F(r), was defined in order to increase the bias towards
the preferential selection of the more catalytically active
surfaces. This function was defined as a simple power law
of the form

F(r ) = r γ . [3]

Let r′ denote the activity of the most active surface in the
population and r̄ the corresponding average activity of the
population. The exponent, γ , was adaptively chosen so as
to maintain the ratio r ′/r̄ at the constant value, n, giving

γ = ln(n)

ln(r ′/r̄ )
. [4]

Typically n was taken to have a value of 3, leading to the best
surface from each population being selected for breeding
three times as often as a surface with the mean activity.

The parameters required by the GA are the population
size, probability of a successful crossover occurring and the
mutation rate. There are no established quantitative ways
of obtaining an optimal set of parameters for a GA and the
parameters used in this work were obtained by a process
of trial and error. Typically the probability of a successful
crossover was taken as 0.85 and the probability of mutating
an individual gene as 0.02. There is also some freedom in the
specification of the details of the crossover operation. Here
it was found useful to take into account the geometry of the
two-dimensional catalyst surface by implementing a two-
point crossover, similar to that shown in Fig. 3 but acting
directly on the two-dimensional arrays used to represent the
surface rather than on the commonly used one-dimensional
string. Without this modified crossover operation it proved
to be impossible to get the algorithm to converge. The de-
tails of the crossover operation are given in the Appendix.

RESULTS AND DISCUSSION

Figures 4 and 5 illustrate the results obtained for the
A + B → AB↑ reaction for the case where the reacting
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FIG. 4. Optimisation of a two-component catalyst for the A + B →
AB↑ reaction with equal quantities of each reactant in the bulk phase.
The turnover frequency, calculated by the Monte Carlo simulation, of the
most catalytically active member of the population is compared with that
calculated as the population average. The first 80 generations of evolution
are shown.

mixture consists of equal quantities of A and B. These re-
sults show the algorithm locating the optimal solution after
approximately 50 generations. A good indication that the
algorithm has arrived at an optimal, or locally optimal, so-
lution is the convergence of the population towards a single
solution. This was indicated by the narrowing of the differ-
ence between the activity of the best surface of the pop-
ulation of each generation and the average activity of the
whole population, as shown in Fig. 4. Figure 5 illustrates the
evolution of the optimal solution for this problem, demon-
strating the spreading of the desirable

[ 0
1

1
0

]
group forming

the checkerboard pattern, where 0 and 1 each represent one

FIG. 5. Evolution of the solution to the A + B → AB↑ reaction with
equal quantities of each reactant in the bulk phase as illustrated by the best
solution from each generation. The generation from which each solution
was selected is indicated above each grid.

of the two possible surface sites. These results agree with
the heuristic arguments put forward regarding the design of
a similar catalyst for the A + (1/2)B2 → AB↑ reaction (19)
in that the checkerboard pattern allows for the maximum
number of active boundaries between differing adsorption
sites. From Fig. 5 we also see that the density of S1 sites in the
best solutions immediately approaches and remains close
to the value 0.5, which is indeed its value in the optimal solu-
tion. Closer inspection of the whole population shows that
the majority of surfaces have approximately this density af-
ter only a few generations. We interpret this as showing that
the GA manages to find the optimal site density well before
it solves the more difficult problem of finding the optimal
geometric configuration of sites. Evaluation of surfaces with
a range of site densities confirms that the activity depends
very strongly on this parameter. Thus the GA could help
us identify significant design parameters even in situations
where it is unable to identify an optimal solution.

Although it might have been considered possible to pre-
dict that the checkerboard pattern would have been the
optimal site distribution for the case when the reactants
are present in the bulk phase in equal quantities, it is not so
clear what the optimal distribution should be for other bulk
phase compositions. As a further test of our methodology
we considered the design of catalyst surfaces for a range of
bulk phase compositions. Altering the bulk phase composi-
tion such that one of the species becomes twice as likely as
the other to attempt in adsorption even leads to noticeable
changes in both the site densities and their configuration.
The most active solution found in this case is shown in Fig. 6,
with the repeating unit being[ 1 0 0

0 1 0
0 0 1

]
.

This result is significant as it demonstrates that altering the
gas phase composition leads to a compensating effect in the
site density. In this example doubling the adsorption prob-
ability halves the number of adsorption sites for that par-
ticular component, with the consequence that the surface
coverages of the two species remain approximately equal.

FIG. 6. Optimal solution with unequal quantities of each reactant; in
this case the ratio of A to B is 2 : 1. Species A and B adsorb on the black
and white sites, respectively.
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Again these results show that the surface arranges itself
such that the number of reactive sites at the interface be-
tween the two adsorption sites is maximised. This diagonal
arrangement was maintained for the higher A : B ratios of
3 : 1 and 4 : 1, there being no further tendency to reduce the
number of adsorption sites for the species predominant in
the bulk phase. This limiting behaviour is to be expected
due to the formation of adsorption sites which only border
sites of the same type if one of the surface sites becomes too
predominant. These unreactive sites cannot lead to the for-
mation of reactive pairs and so are avoided by the optimisa-
tion algorithm. The arrangement shown in Fig. 6 represents
a compromise between the optimal number destiny of each
type of site and the increasing tendency to form unreactive
sites with several neighbouring sites of the same type.

CONCLUSIONS

We have introduced a rational methodology for the op-
timal design of simple catalyst surfaces at the molecular
level using a genetic algorithm in combination with Monte
Carlo simulations. This method has been applied to a sim-
ple A + B → AB↑ reaction occurring on a two-component
catalyst. In the particular case where the bulk phase is
a mixture of equal amounts of each component, the sur-
face yielding the highest catalytic activity is found to be
a checkerboard distribution of the two catalytically active
sites. Deviations from this configuration are observed for
cases in which the bulk phase is not composed of an equal
mixture of the reactants. As the relative proportion of one
of the species increases, the number of adsorption sites for
that species tends to a ratio of 2 : 1 in favour of the site ad-
sorbing the deficient component. Further increase in this
ratio does not occur, as it would require the formation of
sites on the catalyst surface which border only sites of the
same type, and thus could not be involved in the formation
of reactive pairs.

The purpose of the present paper is to introduce the use of
the GA as a practical tool in catalyst design problems and to
demonstrate that, in the case of a model system, the catalyst
designs obtained are sensible. Thus we are now in a position
to consider the extension of this approach to more complex
systems. Two possible extensions are considered here. First,
the incorporation into the design process of effects such
as sintering, adsorbate-induced surface reconstruction, and
poisoning. Second, the use of GAs to identify key catalyst
design parameters even in situations where the determina-
tion of optimal catalyst structure may be unfeasible.

To generate catalyst designs which take account of the
deactivation processes mentioned above, we need only re-
place the simple Monte Carlo model used here with one
which incorporates the required physical phenomena. Pro-
cesses such as sintering (23), surface reconstruction (24, 25),
and catalyst poisoning (26) have been investigated exten-
sively using Monte Carlo methods, so their incorporation

would be a simple extension of the work presented here.
Furthermore, the use of Monte Carlo simulation for the
evaluation of fitness is not essential. A GA-based process
could be used in conjunction with other evaluation tech-
niques, for example, molecular dynamics simulations of an-
alytical models. The use of Monte Carlo methods is very
demanding on computing resources, so the use of more ef-
ficient evaluation techniques, where appropriate, would be
desirable.

In the application of GA-based design to a highly com-
plex system, such as a silica-supported metal catalyst, it
might prove impossible to obtain a unique, optimal catalyst
design within an acceptable simulation time. The results of
this paper suggest that the use of the GA might still provide
us with valuable indications of which design parameters are
important and with estimates of their optimal values. Let
us take the example of a Pt/silica catalyst. On a first itera-
tion we might identify particle size and the ratio of isolated
to clustered hydroxyls on the silica surface as the impor-
tant influences on catalyst performance. The identification
of these key characteristics would reduce an intractable de-
sign problem to one in which we need to optimise over a
small set of variables. A further GA could then be used to
address this restricted problem.

APPENDIX

The GA will result in the exponential spread of com-
pact clusters of genes which produce above average fitness,
according to the schema theorem introduced by Holland
(11, 27). A schemata is a template describing a subset of
chromosomes with some common characteristic at partic-
ular positions in each chromosome. This generalisation is
facilitated by extending the set of characters used to encode
each chromosome by the inclusion of a wild card character,
here denoted as an asterisk, which permits the gene to as-
sume any value, that is either 0 or 1 in the case of a binary
encoding. For optimal performance it is required that the
known elements of any schemata be located as close to each
other as possible to avoid fragmentation of the schemata
in the crossover operation. It is for this reason that two-
dimensional binary strings were used to encode the surface
as opposed to the conventional one-dimensional string en-
coding. For example, the schemata

1 0 ∗ ∗
0 1 ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


may be identified as “good” as each 1 has a 0 neighbour
but in the 1-D representation the desirable

[ 1
0

0
1

]
group is

unlikely to be maintained as the [10∗∗01..] string is quite
likely to be fragmented in the crossover operation. To
overcome this limitation we implemented a two-point, two-
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FIG. A1. The two-dimensional crossover operation.

dimensional crossover by crossing over rectangular sections
of the binary string as illustrated in Fig. A1. Two points were
selected at random in one of the parent chromosomes and
the resulting section was swapped with the corresponding
section of the other parent chromosome, producing the two
children.
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